
Steven Wittens, Amsterdam, October 2005

Search Module
Demystified

Steven Wittens

October 2005
DrupalCon, Amsterdam

Steven Wittens, Amsterdam, October 2005

What I'll be talking about
● Search API/Hooks structure (4.7)
● HTML Indexer
● Searching Drupal.org

Break open the big scary module with the
gigantic tables

Steven Wittens, Amsterdam, October 2005

Overview
● Several layers of hooks
● Evolved out of pre-4.6 search

Search.module

Search UI Search API HTML Indexer

Node.module

Content Search

User.module

User Search

Steven Wittens, Amsterdam, October 2005

Overview

Search.module

Search UI Search API HTML Indexer

Node.module

Content Search

User.module

User Search

Steven Wittens, Amsterdam, October 2005

Search.module
● Gateway to searching, invokes hook_search()

search_view()

node_search() user_search()...

search_data()

Steven Wittens, Amsterdam, October 2005

Hook_search()

● Tab on /search/modulename
● search_form() extensible through $op='form'
● Clean permalink for each query (HTTP GET):
/search/modulename/keywords

● Returns array of results, with various named
fields (title, snippet, date, type, ...)

● Results themed with theme_search_item()

Multifunctional hook with an operation ($op) parameter.

Steven Wittens, Amsterdam, October 2005

Advantages
● Consistent look and theming of results
● search_data() can be invoked by anyone (e.g.

Do a content search on 404, based on URL)
● Lets you focus on fetching the data itself:
user_search() is 17 lines long

Steven Wittens, Amsterdam, October 2005

Overview

Search.module

Search UI Search API HTML Indexer

Node.module

Content Search

User.module

User Search

Steven Wittens, Amsterdam, October 2005

HTML Indexer
● System for efficiently searching chunks of

HTML (items) with an id and type (e.g. node 42)
● Indexed with hook_update_index() on cron
● Can run complicated queries (and/or, phrases,

negatives), like popular search engines

● Returns results ranked by relevancy
● Two-pass extensible query in SQL using

temporary tables

Zaphod Ford OR Arthur "Paranoid android" -radio

Steven Wittens, Amsterdam, October 2005

Preprocessing
● Goal: split text into words (tokenization)
● Applied to index data and search keywords
● Rules for dealing with acronyms, URLs,

numerical data (Unicode-aware)
● Language-specific preprocessing through
hook_search_preprocess($text):
resumé → resume (accent removal)
blogging → blog (stemming)
blogs → blog (stemming)
青い猫 → 青い 猫 (word splitting)

Steven Wittens, Amsterdam, October 2005

Inverted Index (1st pass)

● Use HTML tags to find important words
● Sum scores for multiple keywords after dividing

by their total count across the site
● Automatically separates meaningful words from

noise words
● Results in a relevancy score, fractional number

0..1 (more is better)

Steven Wittens, Amsterdam, October 2005

1st pass: Inverted index
● search_index table stores all the unique words

for each item, along with a score per word
● Score based on frequency and HTML tags

Drupal = 2

Drupal is a content management system. Drupal is coded in PHP.

Steven Wittens, Amsterdam, October 2005

1st pass: Inverted index
● search_index table stores all the unique words

for each item, along with a score per word
● Score based on frequency and HTML tags

Content = 5 ∗ 1

Drupal is a content management system. Drupal is coded in PHP.

Steven Wittens, Amsterdam, October 2005

1st pass: Inverted index
● search_index table stores all the unique words

for each item, along with a score
● Score based on frequency and HTML tags

● Scores summed per word and saved in
search_total. Higher total = more noisy

Drupal is a content management system. Drupal is coded in PHP.

Steven Wittens, Amsterdam, October 2005

Searching & Ranking: TF/IDF
● First pass: searching the inverted index = simple

AND query on the positive keywords + relevancy
ranking.

● Per keyword: score in an item / sum of all scores
across site = relevancy for a keyword
e.g. Drupal = 7, total(Drupal) = 1000

Installation = 3, total(Installation) = 10
→ Relevancy = 7/1000 + 3/10 = 0.307

● Rare words score better than common words

Steven Wittens, Amsterdam, October 2005

HTML Links
● Recognizes links to nodes on the current site,

both relative and absolute
● Can resolve URL aliases
● Adds the link's caption to the target node rather

than the current item being indexed
● If the caption is just the URL, use the target's title

instead

Steven Wittens, Amsterdam, October 2005

2nd pass: Full Dataset
● search_dataset table stores the literal

(preprocessed) data
● Do literal string matching to satisfy phrases,

AND/OR mixing, negatives
● Without the first pass, this operation would be

very expensive (full table scan)

Steven Wittens, Amsterdam, October 2005

Why not use MySQL FULLTEXT()?
● DB-specific (PgSQL tsearch2 is not standard)
● Fulltext is a special type of database index on one

or more columns of a table
● Nodes, comments, ... would need to be

aggregated into a single table anyway
● Possible for the future, but would not get rid of

cron-based indexing
● Would not understand HTML nor track links

Steven Wittens, Amsterdam, October 2005

Overview

Search.module

Search UI Search API HTML Indexer

Node.module

Content Search

User.module

User Search

Steven Wittens, Amsterdam, October 2005

Content: node_search()
● Uses the HTML indexer to index entire nodes

(with comments)
● Provides extra conditions (node type, taxonomy

term, ...) with a Google-like syntax (type:blog)
● Extends search ranking with extra factors which

can be weighted by the admin:
relevancy * 5 + freshness * 3 + comment count

● Indexed data can be further extended through
nodeapi('update index') (e.g. File
attachment contents)

Steven Wittens, Amsterdam, October 2005

Content Search

test type:forum,story category:1 "tinky winky" OR "dipsy" -"uh oh" "teletubby bye bye"

Steven Wittens, Amsterdam, October 2005

Index entire node
● Nodeapi('update index') used to add extra HTML

content, using tags as well

Steven Wittens, Amsterdam, October 2005

Content Search Results
● Highlighted snippet with search_excerpt()
● Nodeapi('search result') used to add extra

information (e.g. Comment count)
● Node type, author information, creation date, ...

Steven Wittens, Amsterdam, October 2005

Big picture
Search.module

Menu handler
search_view()

API
search_excerpt()

search_query_...()

HTML Indexer
search_index()

do_search()

Node.module

hook_search()

User.module

hook_search()

search_data()

hook_update_index()

Comment.module and others

hook_nodeapi('search result')hook_nodeapi('update index')

Steven Wittens, Amsterdam, October 2005

Drupal.org search
● Large database (30000 nodes, 60000 comments)
● Low signal-to-noise ratio, lots of repeat
● Means: even with AND search, too many results
● Almost no-one goes to 2nd page of results

→ Ranking, not matching, is most
essential factor

● Stemming reduces index size by 30%

Steven Wittens, Amsterdam, October 2005

What was wrong with 4.6 search?
● HTML tag recognition got confused with

unclosed HTML tags:

● Wildcards destroyed performance of database
indices (use stemming instead)

● No advanced matching
● Coefficients not as optimized

Foo bar foo bar foo bar

Steven Wittens, Amsterdam, October 2005

Why not trip_search.module?

● Queries original tables directly, does not
aggregate entire nodes

● Sorts by date, only good if there is high signal-to-
noise

● Does full table scans every time

Good for small sites with lots of relevant content

Steven Wittens, Amsterdam, October 2005

Why not Google?

● Google only sees public content
● Google does not understand Drupal node

structure (e.g. Taxonomy)
● Google's free API is limited in # of queries

Steven Wittens, Amsterdam, October 2005

Issue: search as a module?
● Search is becoming more essential, but is still an

optional module
● Useful API mixed with front-end
● But, API (indexer) needs to be a module (cron),

like taxonomy.module
● Node search is located in node.module, adds a

large chunk of non-essential code to a required
module

Steven Wittens, Amsterdam, October 2005

UI improvements

● Examine search patterns for end users
● Determine requirements for module developers
● What is needed?

4.7 update is mostly algorithmic

Steven Wittens, Amsterdam, October 2005

Conclusion
● If you remember 50% of all that, great
● Search is very extensible, so get in there and play

around
● Slides / more info (neato 404 search)

http://acko.net/amsterdam
● Pre-patched HEAD

http://acko.net/dumpx/searchpatched.zip

