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What I'll be talking about
● Search API/Hooks structure (4.7)
● HTML Indexer
● Searching Drupal.org

Break open the big scary module with the 
gigantic tables
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Overview
● Several layers of hooks
● Evolved out of pre-4.6 search

Search.module

Search UI Search API HTML Indexer

Node.module

Content Search

User.module

User Search
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Search.module
● Gateway to searching, invokes hook_search()

search_view()

node_search() user_search()...

search_data()
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Hook_search()

● Tab on /search/modulename
● search_form() extensible through $op='form'
● Clean permalink for each query (HTTP GET):
/search/modulename/keywords

● Returns array of results, with various named 
fields (title, snippet, date, type, ...)

● Results themed with theme_search_item()

Multifunctional hook with an operation ($op) parameter.
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Advantages
● Consistent look and theming of results
● search_data() can be invoked by anyone (e.g. 

Do a content search on 404, based on URL)
● Lets you focus on fetching the data itself: 
user_search() is 17 lines long
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HTML Indexer
● System for efficiently searching chunks of 

HTML (items) with an id and type (e.g. node 42)
● Indexed with hook_update_index() on cron
● Can run complicated queries (and/or, phrases, 

negatives), like popular search engines

● Returns results ranked by relevancy
● Two-pass extensible query in SQL using 

temporary tables

Zaphod Ford OR Arthur "Paranoid android" -radio
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Preprocessing
● Goal: split text into words (tokenization)
● Applied to index data and search keywords
● Rules for dealing with acronyms, URLs, 

numerical data (Unicode-aware)
● Language-specific preprocessing through 
hook_search_preprocess($text):
resumé → resume (accent removal)
blogging → blog (stemming)
blogs → blog (stemming)
青い猫 → 青い  猫 (word splitting)
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Inverted Index (1st pass)

● Use HTML tags to find important words
● Sum scores for multiple keywords after dividing 

by their total count across the site
● Automatically separates meaningful words from 

noise words
● Results in a relevancy score, fractional number 

0..1 (more is better)
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1st pass: Inverted index
● search_index table stores all the unique words 

for each item, along with a score per word
● Score based on frequency and HTML tags

Drupal = 2

Drupal is a <em>content management system</em>. Drupal is coded in PHP.
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1st pass: Inverted index
● search_index table stores all the unique words 

for each item, along with a score per word
● Score based on frequency and HTML tags

Content = 5 ∗ 1

Drupal is a <em>content management system</em>. Drupal is coded in PHP.
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1st pass: Inverted index
● search_index table stores all the unique words 

for each item, along with a score
● Score based on frequency and HTML tags

● Scores summed per word and saved in 
search_total. Higher total = more noisy

Drupal is a <em>content management system</em>. Drupal is coded in PHP.
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Searching & Ranking: TF/IDF
● First pass: searching the inverted index = simple 

AND query on the positive keywords + relevancy 
ranking.

● Per keyword: score in an item / sum of all scores 
across site = relevancy for a keyword
e.g. Drupal = 7, total(Drupal) = 1000

Installation = 3, total(Installation) = 10
→ Relevancy = 7/1000 + 3/10 = 0.307

● Rare words score better than common words
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HTML Links
● Recognizes links to nodes on the current site, 

both relative and absolute
● Can resolve URL aliases
● Adds the link's caption to the target node rather 

than the current item being indexed
● If the caption is just the URL, use the target's title 

instead
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2nd pass: Full Dataset
● search_dataset table stores the literal 

(preprocessed) data
● Do literal string matching to satisfy phrases, 

AND/OR mixing, negatives
● Without the first pass, this operation would be 

very expensive (full table scan)
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Why not use MySQL FULLTEXT()?
● DB-specific (PgSQL tsearch2 is not standard)
● Fulltext is a special type of database index on one 

or more columns of a table
● Nodes, comments, ... would need to be 

aggregated into a single table anyway
● Possible for the future, but would not get rid of 

cron-based indexing
● Would not understand HTML nor track links
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Content: node_search()
● Uses the HTML indexer to index entire nodes 

(with comments)
● Provides extra conditions (node type, taxonomy 

term, ...) with a Google-like syntax (type:blog)
● Extends search ranking with extra factors which 

can be weighted by the admin:
relevancy * 5 + freshness * 3 + comment count

● Indexed data can be further extended through 
nodeapi('update index') (e.g. File 
attachment contents)
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Content Search

test type:forum,story category:1 "tinky winky" OR "dipsy" -"uh oh" "teletubby bye bye"
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Index entire node
● Nodeapi('update index') used to add extra HTML 

content, using tags as well
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Content Search Results
● Highlighted snippet with search_excerpt()
● Nodeapi('search result') used to add extra 

information (e.g. Comment count)
● Node type, author information, creation date, ...
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Big picture
Search.module

Menu handler
search_view()

API
search_excerpt()

search_query_...()

HTML Indexer
search_index()

do_search()

Node.module

hook_search()

User.module

hook_search()

search_data()

hook_update_index()

Comment.module and others

hook_nodeapi('search result')hook_nodeapi('update index')
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Drupal.org search
● Large database (30000 nodes, 60000 comments)
● Low signal-to-noise ratio, lots of repeat
● Means: even with AND search, too many results
● Almost no-one goes to 2nd page of results

→ Ranking, not matching, is most
essential factor

● Stemming reduces index size by 30%
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What was wrong with 4.6 search?
● HTML tag recognition got confused with 

unclosed HTML tags:

● Wildcards destroyed performance of database 
indices (use stemming instead)

● No advanced matching
● Coefficients not as optimized

Foo bar <b>foo bar<b> foo bar
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Why not trip_search.module?

● Queries original tables directly, does not 
aggregate entire nodes

● Sorts by date, only good if there is high signal-to-
noise

● Does full table scans every time

Good for small sites with lots of relevant content
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Why not Google?

● Google only sees public content
● Google does not understand Drupal node 

structure (e.g. Taxonomy)
● Google's free API is limited in # of queries
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Issue: search as a module?
● Search is becoming more essential, but is still an 

optional module
● Useful API mixed with front-end
● But, API (indexer) needs to be a module (cron), 

like taxonomy.module
● Node search is located in node.module, adds a 

large chunk of non-essential code to a required 
module
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UI improvements

● Examine search patterns for end users
● Determine requirements for module developers
● What is needed?

4.7 update is mostly algorithmic
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Conclusion
● If you remember 50% of all that, great
● Search is very extensible, so get in there and play 

around
● Slides / more info (neato 404 search)

http://acko.net/amsterdam
● Pre-patched HEAD

http://acko.net/dumpx/searchpatched.zip


